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Optical activity and spatial dispersion
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Constitutive equations for the description of optical activity are considered in the scheme of anisotropic
nonconducting materials whose response is memory dependent and nonlocal. Attention is then restricted to
models containing spatial derivatives up to second order. A dissipation principle is adopted in the form of the
Clausius inequality for cycles and, because of nonlocality, the occurrence of an entropy flux is allowed.
Thermodynamic restrictions are derived by accounting for the constraints placed by Maxwell's equations and
letting the fields be time harmonic. Optically actiwhiral) and optically inactive media are examined sepa-
rately. In the first case thermodynamics is shown to imply the definiteness of the imaginary parts of the
permittivity and the permeability along with a bound for the skew-symmetric terms of the real parts. In the
second case the occurrence of quadratic terms or higher proves to rule out the possibility of first-order terms.
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PACS numbeps): 41.20.Bt, 78.20.Jq, 78.20.Ls

I. INTRODUCTION peared in considerable abundarisee[5—7] and references
therein. Next, optically inactive media are modeled by keep-

Optical activity is generally described by letting the per-ing all terms of spatial interaction up to second order in the
mittivity tensor be a function of the frequenay (of mono-  distance. The entropy flux proves to be nonzero and the
chromatic wavesand the wave vectok. It is then under- fourth-order tensors, relating the second-order derivatives of
stood that the pertinent fields are taken to depend on spaébe electric field and the magnetic field to the electric dis-
and time as time-harmonic plane waves [&p x— wt)]. placement and the magnetic induction, satisfy relations
Next the dependence of the permittivity &ris expressed in analogous to those of the permittivity and the permeability.
terms of expansions in powers kfto the order of interest
(see[1-3]). Hence, by considering suitable termskrand Il. DISSIPATION PRINCIPLE
disregarding others, various models are giveptically ac-
tive and optically inactive medjalt is the purpose of this
paper to show that definite results are obtained by framin
the behavior of electromagnetic media within the context o
nonlocal materials, with memory, and by deriving the restric-
tions placed by thermodynamics.

In general, the value of the electric displacement at th
place x and timet, D(x,t), depends on the value of the
electric fieldE(x’,t") at all previous times’<t and places
x" in some region about. We let the analogous property
hold for the magnetic inductioB and the magnetic fieltl.  \yheree is the specific internal energy,is the heat supply
Physical motivations for such nonlocal behavior, or spatialper unit volumg, and an overdot denotes the time derivative
dispersion, are given, e.g., [8,4]. Here we exhibit the es- (see[9]). In standard approaches, an entropy densitis

sentials of a thermodynamic framework, for nonconductingzonsidered and the statement of the second law is taken to be
materials, which incorporates nonlocality through an entropyy, the Clausius-Duhem form

flux. Next, starting from linear relations for materials with
spatial dispersion and memory in time, approximate consti- .o
tutive equations are considered that involve first- and n=5=0 (2.2
second-order space derivatives.

The thermodynamic analysis is performed by preliminar-for any process. Substitution of from Eq. (2.1) into Eq.
ily investigating the restrictions placed by Maxwell's equa- (2.2) gives
tions. First, natural optical activity is considered through a _ _
general model that comprises chiral media. In particular it n—e+H-B+E-D=0. (2.3
follows that the entropy flux is zero, the imaginary part of
the permittivity tensor is positivédefinite, the imaginary Here we let the statement be more general than(Eg) in
part of the inverse of the permeability tensor is negative, antghat we restrict attention to cyclésee[10]) and let an en-
their real parts have suitably small skew-symmetric termstropy flux N occur. Consider any regicRCR and any cycle
Simple models of the physical literature are shown to bdn the time interval 0,d). Hence we let the dissipation prin-
recovered as particular cases. The interest in chiral media hasple or the second law of thermodynamics be expressed by
been emphasized by recent publications, which have aphe Clausius-type inequality

Consider a body subject to an electromagnetic field and
ccupying a regiorR. We assume that the material is non-
gonducting, i.e., the heat flux and the electric current vanish,

and the(absolutg temperaturd is constant. Throughout, the
rationalized system of units is used. Hence, on the basis of
goynting’s theorentsee[8]), we write the balance of energy

e=H.B+E-D+r, 2.1)
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f(a'n—'s+H-|'3+E.D)dv+f ON-n da}dtao,
P ap
(2.4)
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E(x+r,t—u)=E(X,t—u)+(r-V)E(X,t—u)
+i(rer)-(VRV)E(x,t—u)+o(r?), (3.3

whereo(r?)—0 faster tharr?, uniformly int—u. Substitu-

wheren is the unit outward normal. The overall contribution tion of Eq. (3.3 into Eq. (3.2 gives

of N onR is required to be zerfsee Eq(3.7) of [4]] in that

d
f f 6N-n da
o| Jar

It is convenient to consider the free-enthalpy dengitye
—6n—H-B—E-D. In a cycle, at any placg of the body,
the final value of{ at timet=d equals the initial value at
time t=0. Upon substitution fo¢ in Eqg. (2.4) we have

i

dt=0. (2.5

_f (H~B+E-D)dv+f 6N-n da|dt=0. (2.6
P JP

For the present purposes the inequaltyp) is allowed to

hold for any smooth regiof®. Hence the smoothness of the

fields, the divergence theorem, and the arbitrarines® of
yield

fd[,q.m E-D-V-(6N)](x,0)dt<0  (2.7)
0

for every placex of the body.

Any physically admissible model of electromagnetic

(nonconductiny solid must satisfy the inequalit§2.7) with
an appropriate expression of the entropy flixIndeed, as
we will see in a moment, the form & is strictly related to
the constitutive model under consideration.

Ill. CONSTITUTIVE RELATIONS

Di(t)=&ij* E{+ Bijic* Efj kg + Bij* Eqjao + Yija* Ej ja +h.0.,
(3.9

where the asterisk denotes a generalized convolution, e.g.,

[

Sii*E}:*‘:i(}Ej(t)+f gij(WE;(t—u)du.

0

(3.5

The constant termsej,B5.vq and the functions
&ij(u),Bijk(u), 7iju(u) are the integrals overP, of
7ij (1), 7ij (DN 7y, (DTl and ;i (r,u), x;; (r,u)ry,
Xij(r,u)ryry . Also, h.o. means the remaining contribution
due to the integrals of{r)o(r?), and x(r,u)o(r?), while
(k,j) and[Kk,j] denote symmetrization and skew symmetri-
zation. The skew parfk,j] allows the second term to be
written as theith component of, sayeV XE, wherea;s=3
Bijkesjk and e is the sjk component of the alternating
tensor. The same arguments apply to the expressioB.for
Henceforth we disregard the h.o. terms. Hence we write
the constitutive equation8.1) for D andB as

Di(t) =&ij* Ext aij* (VXEYj+ Bij* Efj i+ ij* Ej i »
(3.6

B|(t):,LL|]* H}-I—)\,J*(VX Ht)] + Vijk* HEJ,k)+ Kijk|* H}(kl .
The state of the body, at the plageand timet, is then the

set of histories E'(x),VE!(x),VVE'(x),H!(x),VH!(X),
VVH!(x). Incidentally, the knowledge of the fieE'( ) al-

To describe optical activity we may borrow from the lows the evaluation of the gradien®E'( ),VVE!( ) at any
scheme of materials with memory where the state is a propgrlace. Here, however, the state involves the history at the
set of historie$9,10]. Indeed, we let the state of the material pertinent placex, not the whole field E'(). Hence

be the pair of fields of historieB',H" at the pertinent region
P. Hence we write
D(x,)=D(E'( ),x), B(X=B(H().%), (3.1
with the meaning that, e.gD at the placex and timet
depends on the electric field at any place at all times prior
to the present timé. Denote byP~X Ipe regionP relative to

the originx. Here the functional®,B are taken to be linear

in that
D(x,t)=f
P,

X

[f(r)E(err,t)

+J:x(r,u)E(x+r,t—u)du dv, (3.2

and analogously foB; 7 and x are functions that associate
re Py, andr e Py,ue[0,) with a second-order tensor. For
smooth fields we write

E'(x),VE!(x),VVE!(x) are independent of one another.

If the memory effects are negligible, Eq8.6) and (3.7)
simplify to the corresponding ones with the convolutions re-
placed by constant coefficients times the value at time
Substitution of Egs(3.6) and(3.7) into the inequality(2.7)
and some rearrangement yield

d . . . .
f [—(H-p*rH+H A VXH+H-#*VH—VH. sx VH
0

+E-e*E+E- a*VXE+E- B*VE—VE. 9+ VE)

+V.(ON—Ey* VE—Hsx VH)]dt=0, (3.9

where, e.g.H-V*VHIHiV”k*Hj’k. Hence Eq(3.8) holds
only if
ON=Ey* VE+Hu* VH (3.9

to within the curl of any vector function. We now examine
the remaining inequality
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d . . . . where c.c. denotes the complex conjugate of the whole pre-
fo [~(H-prH+H-AVXH+H-»»VH-VH: x+VH ceding part. The field€ andH are required to satisfy Max-
well's equations. For time-harmonic fields, Faraday's law
+E-e4E+E-a*VXE+E- B+ VE and Ampee’s law reduce to

—VE.- yVE)]dt=0, (3.10 VXE=iwB, VXH=—ieD+J, (3.18

which must hold for all admissible fields at any placen R.  where J is the phasor of the current densilyi.e., J(x,t)
To derive the restrictions placed by E8.10 on the consti- = J(x)exp(—iwt). Also, settingp(x,t) =g (x)exp(—iwt) be

tutive equationg3.6) and (3.7) it is convenient to consider the free-charge density, we write the continuity equation as
time-harmonic functions. If the functior's andH are time

harmonic, i.e., V- J=iwp. (3.19
E(x,t)=E(X)exp —iwt), H(x,t)=7—£(x)exp(—ia();),1]) It follows from Egs.(3.18 and(3.19 that
V.B=0, V.-D=op. (3.20

the time-dependence factorizes, i.e.,

Hence the field€,H,B,D satisfy Maxwell's equations pro-

DO O=D)exp~iwt), BH=BXexp—iol), — i4eq only that Egs(3.18 and (3.19 hold.

(3.12
and the constitutive equations become IV. ANISOTROPIC CHIRAL MEDIA
A A - A A remarkable particular case is obtained by settin
Di=¢gj&+ aij(VXE)j+ Bijj 1ot Vij € ki » @13 . . P y 9
B.7,v,k=0, whence

Bi= i+ Ny (VX HO) 4 B+ Ripa Mg, (319 D=2£+aVXE, B=gH+\VXH. (4.1

where the caret denotes the coefficient of the instantaneous

response plus the Fourier transform of the kernel, e.g.,  ence Eq(3.9) implies that
% N=0. 4.2
éij :Sﬂ + f sij(u)exmwu)du
0 Owing to Eq.(3.18 we have
=8?j+fo gjj(u)coswu du-i-ifO gij(u)sin wu du. D=eE+ivaB 4.3
(3.15 and
If the material is heterogeneous the coefficiezh;s...,kw B:ﬂ’)—(—iw;\ég‘—{- W NaB. (4.4
depend on the place it is understood thaD,B,E,H and
the coefficientéij ,...,;}ijm are evaluated at the same place.|f z is nonsingular Eq(4.4) gives
Since a cycle has to occur frote 0 tod, by Eqgs.(3.11) and
(3.12 we setd=27/w. ’H=iw%8+ B, (4.5

The physical content of Eq3.10 is preserved provided
we replace each term with the real part of the appropriat@vhere
time-harmonic function. In this regard consider the identity

RV exp —iwt)]- REW exp(—iot)] R R e R (4.6

=[v-W* +Vv* .w+v-w exp — 2i wt) Accordingly, for any pair oflcomplex values&,B, the ad-
, missible values ofD and ‘H are given by Eqs(4.3) and
VWt exp2Ziot)], (318 (4.5 and those oW x & and VXH by Eq. (3.18. The in-

. . . equality (3.17) reduces to
where the asterisk superscript means a complex conjugate,

and observe that the contributions of exf@{ot) and G A e Aok i Ak ek
exp(dwt) vanish upon integration on the peri¢@,2m/w). (iwg€+ yiB) B +1€-(££" ~iwa’B )+C'C>O(’47)
Hence we obtain from Eq3.10 that :

. N . - . - which must hold for arbitrary values & and B. Let the
M- (pH)* +iH- (AVXH)* +iH- (vVWH)* subscripts 1 aAmdAz inqlicate the real and imaginary parts of a
—iVH- (KVH)* +IE (EE)* +iE (aVX E)* quantity, e.g.e=¢g;+ig, and€E=E,;+1E,. Letting a super-

. scriptT denote the transpose, we find from E4.7) that the
+IiE(BVEY* —IVE - (YVE)* +c.c=0, (3.17  inequality
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— B pB1— By 1Byt By (- ;,I)Bﬁ £, 8,E the_ degrge of _arbi.trariness of the phasé&s<{,D,B and
. their spatial derivatives. If the values B € andV XH are

+E 8,6+ E- (81— £)E— E1- (ar+ E)) B, chosen arbitrarily, Eqg3.18 determine the values @ and
A A D. Hence Egs(3.13 and(3.14 hold with arbitrary values

+& (Gt &) B+ Er- (a1~ &) By of £H and of the symmetric derivativeS; ;) ,H,; jy pro-

vided only that appropriate values of the second-order de-
rivatives VVE and VV'H can be found(nondegenerate
case. Accordingly, at any point of the body the values of
EH VENVH can be regarded as arbitrary. This implies that
the inequality (3.17) must hold for arbitrary values of

+ & (ay— £)B,=0 (4.9

must hold for every quadruple of real vectors
&.,E,,B,,B,. Hence it follows that

< 5> > B 4 8,H,V€_,V’H: .
20, &>0, ®=-&, @=&, (49 By still using the subscripts 1 and 2 for the real and
while ;:1_;_:1 and 77, — ;71 are bounded by imaginary parts, it follows from Eq3.17) that
~ ~ ~ ~ p o o ol -
— By B~ By Byt By (i~ 71)B1=0, (4.10 E1 8611 &5 8267+ &1 (81— £1)Ep+ &y VX E,
) A o + & a,VXE+E - ayVXE—Ey-ay VX E;
E1 8,1+ Ey £,E,+E1- (8, £1)E,=0. (4.11)

+EBVEHE, BVEFEBVE,
The symmetry reIanonsl—e1 and g, = 771, together with

Eq. (4.9, are sufficient but not necessary for the inequalities —Ey PIVEIVEL 1 VE~VE 1,V E,
(4.9 and(4.10 to hold. If the medium is isotropic the ten- +VE,- (- YV E+(E~H)=0, (5.1)
Sorse, a, u,\ become scalars, «, ., \ times the identity ten-
sor 1 and the whole set of conditior(g.9) reduces to where (E—~7H) represents the analogous terms obtained by
.~ R letting £~ and changing appropriately the tensors in-
[(1-w®\a)/p],<0, &,>0, (417 Voled. The arbitrariness of€;,£,,V£;,VE, and
R .~ e ' M, H,,VH,,VH, allows us to conclude that E@5.1)
ay=—(Nelp)z, a;=(Nelu);. holds if and only if
A further simplification arises if the medium is taken to be &, B\, =0, (5.2
nondissipative. Formally, we specify the nondissipative char-
acter by requiring that Eq(4.8) hold as an equality. The £, U-&U+V-&v+u-(g,—&)v=0, >0 (5.3

inequalities in Eq(4.12 then become
.~ R for all vectorsu,v, and analogously fog,, u,, while
[(1—w\a)/n],=0, &,=0. (4.13
. _ Y10 A %A+C-3C—A- (11— 1)C=<0, %<0 (54
Now ¢ is real and the equalities in E¢4.12 amount to
&N = a*. Substitution in Eq(4.13 shows that alsqu is  for all tensorsA,C, and analogously fok,, c; .

real; we then writes andu in place ofe andu to emphasize Nondissipative media are again characterized by requiring
that they are real valued. Accordingly, we have that the dissipation inequality, here E¢p.1), hold as an
equallty Such is the case if and only if, in addition,
~ E -~ =
o= (4.14) iz M2, v», k=0 and, by omitting the unnecessary subscript
M 3
Back to the form(4.1) of the constitutive equations, by Eq. e=¢', p=p', y=9, k=k (5.5

(4.14 we can write o A ~
In indicial form, the symmetry fory and « in Eq. (5.5

* means that
=g|E+ — VXE]|, (4.15
K 7|Jk| 7Jlk| ) KleI Kjlk| ) (5.9
B \ the invariance by interchange of the third and fourth indices
B=p|H+ “ VXH|. 418 peing true by definition.
If we let X be real, Eqgs(4.195 and (4.16 are exactly the VI. CONCLUSION

model that traces back to Drude, Born, and Fedésee|5]). ) ) _ _ )
Chiral media are considered by lettiiy be given by

convolutions oft andV XE andB by convolutions oH and
VXH. The constraints placed by Maxwell’s equations are
We consider the constitutive relatioi3.13 and (3.14), examined and hence necessary and sufficient conditions on
which involve also second-order spatial derivatives, and inthe constitutive functions are derived for the second law to
vestigate the restrictions placed by the inequal@yl?) on  hold. If instead terms up to second-order derivatives are in-
the coefficients, a, ... k. In this regard we have to ascertain volved, the second law implies that the coefficients of the

V. SECOND-ORDER SPATIAL DISPERSION
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first-order derivatives vanish. A generalization of the modelnonzero. In the isotropic case; and A may be complex
with higher-order derivatives would lead to the vanishing ofvalued, which means that the kernels @fand A need not
the odd-order derivatives. This result allows us to view op-vanish. They vanish if the particular Drude-Born-Federov
tically active or inactive media in a different way. If terms of model is adopted.

second order and higher are zero, the medium can be opti- For optically inactive medighigher-order terms thermo-
cally active with appropriate thermodynamic restrictions. If dynamics requires thgsee Eqs(5.3) and(5.4)]

higher-order terms occur then only those of even order may
be nonzero. It is worth mentioning the assertion that in crys-
tals, whose symmetry does not allow natural optical activity,
the first terms in the expansion of the permittivity are qua-while Eq. (5.2 holds. In terms of the functional representa-
dratic termg 2]. Here we have proved that also the converseions, Eq.(6.3) means that the sine transform of the pertinent

£,>0, u,>0, ¥,<0, Kk,<0, (6.3

is true, namely, the occurrence of quadratic or higher-ordekernels are required to be definite, namely,

terms rules out optical activitfirst-order termg

It is of interest to summarize the main results. For opti-
cally active medidEqgs.(4.1)], thermodynamics requires that

[see Eqs(4.2) and(4.9)]

a=—£, N=0,

6.9

<0, &>0, a=£,

where &= i I\& and 7= }(1- w?A&). Nondissipation
means thak, and 7, vanish, namely,
f g(u)sin wu du=0, Vw=0. (6.2
0

The condition(6.2) implies that the kernet(u) is zero for
every u=0. Only the constant value® is allowed to be

f g(u)sin wu du>0, j y(u)sin wu du<Oo, (6.9
0

0

and analogously for the kerneigu), «(u). By Eq. (5.2 the
kernelsa(u), B(u),A(u),»(u) vanish for allu=0.

The present results about optically active and optically
inactive materials, with anisotropy and dissipation, are essen-
tially different. They generalize the inequalities for the per-
mittivity and the permeability of dispersive media that are
derived by requiring that the divergence of the Poynting vec-
tor be negativesee[2], Chap. 2. The generality of the ther-
modynamic conditior{2.7) is at the basis of the progress. In
this regard it is crucial that the entropy fluy, related to
nonlocality, is allowed to occur.
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