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Optical activity and spatial dispersion

Angelo Morro
University of Genoa, DIBE, via Opera Pia 11a, 16145 Genova, Italy

~Received 14 August 1996; revised manuscript received 7 February 1997!

Constitutive equations for the description of optical activity are considered in the scheme of anisotropic
nonconducting materials whose response is memory dependent and nonlocal. Attention is then restricted to
models containing spatial derivatives up to second order. A dissipation principle is adopted in the form of the
Clausius inequality for cycles and, because of nonlocality, the occurrence of an entropy flux is allowed.
Thermodynamic restrictions are derived by accounting for the constraints placed by Maxwell’s equations and
letting the fields be time harmonic. Optically active~chiral! and optically inactive media are examined sepa-
rately. In the first case thermodynamics is shown to imply the definiteness of the imaginary parts of the
permittivity and the permeability along with a bound for the skew-symmetric terms of the real parts. In the
second case the occurrence of quadratic terms or higher proves to rule out the possibility of first-order terms.
@S1063-651X~97!08607-8#

PACS number~s!: 41.20.Bt, 78.20.Jq, 78.20.Ls
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I. INTRODUCTION

Optical activity is generally described by letting the pe
mittivity tensor be a function of the frequencyv ~of mono-
chromatic waves! and the wave vectork. It is then under-
stood that the pertinent fields are taken to depend on s
and time as time-harmonic plane waves exp@i(k•x2vt)#.
Next the dependence of the permittivity onk is expressed in
terms of expansions in powers ofk to the order of interes
~see@1–3#!. Hence, by considering suitable terms ink and
disregarding others, various models are given~optically ac-
tive and optically inactive media!. It is the purpose of this
paper to show that definite results are obtained by fram
the behavior of electromagnetic media within the context
nonlocal materials, with memory, and by deriving the restr
tions placed by thermodynamics.

In general, the value of the electric displacement at
place x and time t, D(x,t), depends on the value of th
electric fieldE(x8,t8) at all previous timest8<t and places
x8 in some region aboutx. We let the analogous propert
hold for the magnetic inductionB and the magnetic fieldH.
Physical motivations for such nonlocal behavior, or spa
dispersion, are given, e.g., in@3,4#. Here we exhibit the es
sentials of a thermodynamic framework, for nonconduct
materials, which incorporates nonlocality through an entro
flux. Next, starting from linear relations for materials wi
spatial dispersion and memory in time, approximate con
tutive equations are considered that involve first- a
second-order space derivatives.

The thermodynamic analysis is performed by prelimin
ily investigating the restrictions placed by Maxwell’s equ
tions. First, natural optical activity is considered through
general model that comprises chiral media. In particula
follows that the entropy flux is zero, the imaginary part
the permittivity tensor is positive~definite!, the imaginary
part of the inverse of the permeability tensor is negative,
their real parts have suitably small skew-symmetric term
Simple models of the physical literature are shown to
recovered as particular cases. The interest in chiral media
been emphasized by recent publications, which have
561063-651X/97/56~1!/1124~5!/$10.00
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peared in considerable abundance~see@5–7# and references
therein!. Next, optically inactive media are modeled by kee
ing all terms of spatial interaction up to second order in
distance. The entropy flux proves to be nonzero and
fourth-order tensors, relating the second-order derivative
the electric field and the magnetic field to the electric d
placement and the magnetic induction, satisfy relatio
analogous to those of the permittivity and the permeabili

II. DISSIPATION PRINCIPLE

Consider a body subject to an electromagnetic field a
occupying a regionR. We assume that the material is no
conducting, i.e., the heat flux and the electric current van
and the~absolute! temperatureu is constant. Throughout, th
rationalized system of units is used. Hence, on the basi
Poynting’s theorem~see@8#!, we write the balance of energ
as

ė5H•Ḃ1E•Ḋ1r , ~2.1!

wheree is the specific internal energy,r is the heat supply
~per unit volume!, and an overdot denotes the time derivati
~see @9#!. In standard approaches, an entropy densityh is
considered and the statement of the second law is taken t
in the Clausius-Duhem form

ḣ2
r

u
>0 ~2.2!

for any process. Substitution ofr from Eq. ~2.1! into Eq.
~2.2! gives

uḣ2ė1H•Ḃ1E•Ḋ>0. ~2.3!

Here we let the statement be more general than Eq.~2.3! in
that we restrict attention to cycles~see@10#! and let an en-
tropy fluxN occur. Consider any regionP,R and any cycle
in the time interval@0,d). Hence we let the dissipation prin
ciple or the second law of thermodynamics be expressed
the Clausius-type inequality
1124 © 1997 The American Physical Society
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E
0

dF E
P
~uḣ2 «̇1H•Ḃ1E•Ḋ!dv1E

]P
uN•n daGdt>0,

~2.4!

wheren is the unit outward normal. The overall contributio
of N onR is required to be zero@see Eq.~3.7! of @4## in that

E
0

dF E
]R

uN•n daGdt50. ~2.5!

It is convenient to consider the free-enthalpy densityz5e
2uh2H•B2E•D. In a cycle, at any placex of the body,
the final value ofz at time t5d equals the initial value a
time t50. Upon substitution forz in Eq. ~2.4! we have

E
0

dF2E
P
~Ḣ•B1Ė•D!dv1E

]P
uN•n daGdt>0. ~2.6!

For the present purposes the inequality~2.6! is allowed to
hold for any smooth regionP. Hence the smoothness of th
fields, the divergence theorem, and the arbitrariness oP
yield

E
0

d

@Ḣ•B1Ė•D2“•~uN!#~x,t !dt<0 ~2.7!

for every placex of the body.
Any physically admissible model of electromagne

~nonconducting! solid must satisfy the inequality~2.7! with
an appropriate expression of the entropy fluxN. Indeed, as
we will see in a moment, the form ofN is strictly related to
the constitutive model under consideration.

III. CONSTITUTIVE RELATIONS

To describe optical activity we may borrow from th
scheme of materials with memory where the state is a pro
set of histories@9,10#. Indeed, we let the state of the mater
be the pair of fields of historiesEt,Ht at the pertinent region
P. Hence we write

D~x,t !5D̃~Et~ !,x!, B~x,t !5B̃~Ht~ !,x!, ~3.1!

with the meaning that, e.g.,D at the placex and time t
depends on the electric fieldE at any place at all times prio
to the present timet. Denote byPx the regionP relative to
the originx. Here the functionalsD̃,B̃ are taken to be linea
in that

D~x,t !5E
Px

Ft~r !E~x1r ,t !

1E
0

`

x~r ,u!E~x1r ,t2u!duGdv, ~3.2!

and analogously forB; t andx are functions that associat
rPPx , andrPPx ,uP[0,`) with a second-order tensor. Fo
smooth fields we write
er

E~x1r ,t2u!5E~x,t2u!1~r•“ !E~x,t2u!

1 1
2 ~r^ r !•~“^“ !E~x,t2u!1o~r2!, ~3.3!

whereo(r2)→0 faster thanr2, uniformly in t2u. Substitu-
tion of Eq. ~3.3! into Eq. ~3.2! gives

Di~ t !5« i j *Ej
t1b i jk*E@ j ,k#

t 1b i jk*E~ j ,k!1g i jkl *Ej ,kl
t 1h.o.,

~3.4!

where the asterisk denotes a generalized convolution, e.

« i j *Ej
t5« i j

0Ej~ t !1E
0

`

« i j ~u!Ej~ t2u!du. ~3.5!

The constant terms« i j
0 ,b i jk

0 ,g i jkl
0 and the functions

« i j (u),b i jk(u),g i jkl (u) are the integrals overPx of
t i j (r ),t i j (r )r k ,t i j ,(r )r kr l and x i j (r ,u),x i j (r ,u)r k ,
x i j (r ,u)r kr l . Also, h.o. means the remaining contributio
due to the integrals oft(r )o(r2), andx(r ,u)o(r2), while
(k, j ) and @k, j # denote symmetrization and skew symmet
zation. The skew part@k, j # allows the second term to b
written as thei th component of, say,a“3E, wherea is5

1
2

b i jk«s jk and «s jk is the s jk component of the alternating
tensor. The same arguments apply to the expression forB.

Henceforth we disregard the h.o. terms. Hence we w
the constitutive equations~3.1! for D andB as

Di~ t !5« i j *Ek
t 1a i j * ~“3Et! j1b i jk*E~ j ,k!

t 1g i jkl *Ej ,kl
t ,
~3.6!

Bi~ t !5m i j *Hj
t1l i j * ~“3Ht! j1n i jk*H ~ j ,k!

t 1k i jkl *Hj ,kl
t .
~3.7!

The state of the body, at the placex and timet, is then the
set of histories Et(x),“Et(x),““Et(x),Ht(x),“Ht(x),
““Ht(x). Incidentally, the knowledge of the fieldEt( ) al-
lows the evaluation of the gradients“Et( ),““Et( ) at any
place. Here, however, the state involves the history at
pertinent place x, not the whole field Et( ). Hence
Et(x),“Et(x),““Et(x) are independent of one another.

If the memory effects are negligible, Eqs.~3.6! and ~3.7!
simplify to the corresponding ones with the convolutions
placed by constant coefficients times the value at timet.
Substitution of Eqs.~3.6! and ~3.7! into the inequality~2.7!
and some rearrangement yield

E
0

d

@2~Ḣ•m*H1Ḣ•l*“3H1Ḣ•n*“H2“Ḣ•k*“H

1Ė•«*E1Ė•a*“3E1Ė•b*“E2“Ė•g*“E!

1“•~uN2Ėg*“E2Ḣk*“H!#dt>0, ~3.8!

where, e.g.,Ḣ•n*“H5Ḣ in i jk*Hj ,k . Hence Eq.~3.8! holds
only if

uN5Ėg*“E1Ḣk*“H ~3.9!

to within the curl of any vector function. We now examin
the remaining inequality



r

o

e

ia
ty

a

pre-
-
w

as

-

ing

of a

1126 56ANGELO MORRO
E
0

d

@2~Ḣ•m*H1Ḣ•l*“3H1Ḣ•n*“H2“Ḣ•k*“H

1Ė•«*E1Ė•a*“3E1Ė•b*“E

2“Ė•g*“E!#dt>0, ~3.10!

which must hold for all admissible fields at any placex in R.
To derive the restrictions placed by Eq.~3.10! on the consti-
tutive equations~3.6! and ~3.7! it is convenient to conside
time-harmonic functions. If the functionsE andH are time
harmonic, i.e.,

E~x,t !5E~x!exp~2 ivt !, H~x,t !5H~x!exp~2 ivt !,
~3.11!

the time-dependence factorizes, i.e.,

D~x,t !5D~x!exp~2 ivt !, B~x,t !5B~x!exp~2 ivt !,
~3.12!

and the constitutive equations become

Di5 «̂ i jEj1â i j ~“3E! j1b̂ i jkE~ j ,k!1ĝ i jklEj ,kl , ~3.13!

Bi5m̂ i jHj1l̂i j ~“3H! j1 n̂ i jkH~ j ,k!1k̂ i jklHj ,kl , ~3.14!

where the caret denotes the coefficient of the instantane
response plus the Fourier transform of the kernel, e.g.,

«̂ i j5« i j
01E

0

`

« i j ~u!exp~ ivu!du

5« i j
01E

0

`

« i j ~u!cosvu du1 i E
0

`

« i j ~u!sin vu du.

~3.15!

If the material is heterogeneous the coefficients«̂ i j ,...,k̂ i jkl
depend on the placex; it is understood thatD,B,E,H and
the coefficients«̂ i j ,...,k̂ i jkl are evaluated at the same plac
Since a cycle has to occur fromt50 tod, by Eqs.~3.11! and
~3.12! we setd52p/v.

The physical content of Eq.~3.10! is preserved provided
we replace each term with the real part of the appropr
time-harmonic function. In this regard consider the identi

Re@v exp~2 ivt !#•Re@w exp~2 ivt !#

5 1
4 @v•w*1v* •w1v•w exp~22ivt !

1v* •w* exp~2ivt !#, ~3.16!

where the asterisk superscript means a complex conjug
and observe that the contributions of exp(22ivt) and
exp(2ivt) vanish upon integration on the period@0,2p/v!.
Hence we obtain from Eq.~3.10! that

iH•~m̂H!*1 iH•~ l̂“3H!*1 iH•~ n̂“H!*

2 i“H•~k“H!*1 iE•~ «̂E!*1 iE•~â“3E!*

1 iE•~b̂“E!*2 i“E•~g“E!*1c.c.>0, ~3.17!
us

.

te

te,

where c.c. denotes the complex conjugate of the whole
ceding part. The fieldsE andH are required to satisfy Max
well’s equations. For time-harmonic fields, Faraday’s la
and Ampère’s law reduce to

“3E5 ivB, “3H52 ivD1J, ~3.18!

whereJ is the phasor of the current densityJ, i.e., J(x,t)
5J(x)exp(2ivt). Also, settingr(x,t)5%(x)exp(2ivt) be
the free-charge density, we write the continuity equation

“•J5 iv%. ~3.19!

It follows from Eqs.~3.18! and ~3.19! that

“•B50, “•D5%. ~3.20!

Hence the fieldsE,H,B,D satisfy Maxwell’s equations pro
vided only that Eqs.~3.18! and ~3.19! hold.

IV. ANISOTROPIC CHIRAL MEDIA

A remarkable particular case is obtained by sett
b̂,ĝ,n̂,k̂50, whence

D5«̂E1â“3E, B5m̂H1l̂“3H. ~4.1!

Hence Eq.~3.9! implies that

N50. ~4.2!

Owing to Eq.~3.18! we have

D5«̂E1 ivâB ~4.3!

and

B5m̂H2 ivl̂«̂E1v2l̂âB. ~4.4!

If m̂ is nonsingular Eq.~4.4! gives

H5 iv ĵE1ĥB, ~4.5!

where

ĵ5m̂21l̂«̂, ĥ5m̂21~12v2l̂â!. ~4.6!

Accordingly, for any pair of~complex! valuesE,B, the ad-
missible values ofD andH are given by Eqs.~4.3! and
~4.5! and those of“3E and“3H by Eq. ~3.18!. The in-
equality ~3.17! reduces to

i ~ iv ĵE1ĥB!•B*1 iE•~ «̂E*2 ivâ*B* !1c.c.>0,
~4.7!

which must hold for arbitrary values ofE andB. Let the
subscripts 1 and 2 indicate the real and imaginary parts
quantity, e.g.,«̂5«̂11 i «̂2 andE5E11 iE2 . Letting a super-
scriptT denote the transpose, we find from Eq.~4.7! that the
inequality
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2B1•ĥ2B12B2•ĥ2B21B2•~ĥ12ĥ1
T!B11E1•«̂2E1

1E2•«̂2E21E1•~ «̂12«̂1
T!E22E1•~â21 ĵ2

T!B2

1E2•~â21 ĵ2
T!B11E1•~â12 ĵ1

T!B1

1E2•~â12 ĵ1
T!B2>0 ~4.8!

must hold for every quadruple of real vecto
E1 ,E2 ,B1 ,B2 . Hence it follows that

ĥ2,0, «̂2.0, â252 ĵ2
T , â15 ĵ1

T , ~4.9!

while «̂12«̂1
T and ĥ12ĥ1

T are bounded by

2B1•ĥ2B12B2•ĥ2B21B2•~ĥ12ĥ1
T!B1>0, ~4.10!

E1•«̂2E11E2•«̂2E21E1•~ «̂12«̂1
T!E2>0. ~4.11!

The symmetry relations«̂15«̂1
T and ĥ15ĥ1

T , together with
Eq. ~4.9!, are sufficient but not necessary for the inequalit
~4.9! and ~4.10! to hold. If the medium is isotropic the ten
sors«̂,â,m̂,l̂ become scalars«̂,â,m̂,l̂ times the identity ten-
sor1 and the whole set of conditions~4.9! reduces to

@~12v2l̂â !/m̂#2,0, «̂2.0,
~4.12!

â252~ l̂«̂/m̂ !2 , â15~ l̂«̂/m̂ !1 .

A further simplification arises if the medium is taken to
nondissipative. Formally, we specify the nondissipative ch
acter by requiring that Eq.~4.8! hold as an equality. The
inequalities in Eq.~4.12! then become

@~12v2l̂â !/m̂#250, «̂250. ~4.13!

Now «̂ is real and the equalities in Eq.~4.12! amount to
«̂ l̂/m̂5â* . Substitution in Eq.~4.13! shows that alsom̂ is
real; we then write« andm in place of«̂ andm̂ to emphasize
that they are real valued. Accordingly, we have

â5
«

m
l̂* . ~4.14!

Back to the form~4.1! of the constitutive equations, by Eq
~4.14! we can write

D5«FE1
l̂*

m
“3EG , ~4.15!

B5mFH1
l̂

m
“3HG . ~4.16!

If we let l̂ be real, Eqs.~4.15! and ~4.16! are exactly the
model that traces back to Drude, Born, and Federov~see@5#!.

V. SECOND-ORDER SPATIAL DISPERSION

We consider the constitutive relations~3.13! and ~3.14!,
which involve also second-order spatial derivatives, and
vestigate the restrictions placed by the inequality~3.17! on
the coefficients«̂,â,...,k̂. In this regard we have to ascerta
s

r-

-

the degree of arbitrariness of the phasorsE,H,D,B and
their spatial derivatives. If the values of“3E and“3H are
chosen arbitrarily, Eqs.~3.18! determine the values ofB and
D. Hence Eqs.~3.13! and ~3.14! hold with arbitrary values
of E,H and of the symmetric derivativesE( i , j ) ,H( i , j ) pro-
vided only that appropriate values of the second-order
rivatives ““E and ““H can be found~nondegenerate
case!. Accordingly, at any point of the body the values
E,H,“E,“H can be regarded as arbitrary. This implies th
the inequality ~3.17! must hold for arbitrary values o
E,H,“E,“H.

By still using the subscripts 1 and 2 for the real a
imaginary parts, it follows from Eq.~3.17! that

E1•«̂2E11E2•«̂2E21E1•~ «̂12«̂1
T!E21E2•â2“3E2

1E1•â2“3E11E1•â1“3E22E2•â1“3E1

1E1•b̂2“E11E2•b̂2“E21E1•b̂1“E2

2E2•b̂1“E12“E1•ĝ2“E12“E2•ĝ2“E2
1“E1•~ ĝ12ĝ1

T!“E21~E°H!>0, ~5.1!

where ~E°H! represents the analogous terms obtained
letting E°H and changing appropriately the tensors
volved. The arbitrariness ofE1 ,E2 ,“E1 ,“E2 and
H1 ,H2 ,“H1 ,“H2 allows us to conclude that Eq.~5.1!
holds if and only if

â,b̂,l̂,n̂50, ~5.2!

«̂1 : u•«̂2u1v•«̂2v1u•~ «̂12«̂1
T!v>0, «̂2.0 ~5.3!

for all vectorsu,v, and analogously form̂2 ,m̂1 , while

ĝ1 : A•ĝ2A1C•ĝ2C2A•~ ĝ12ĝ1
T!C<0, ĝ2,0 ~5.4!

for all tensorsA,C, and analogously fork̂2 ,k̂1 .
Nondissipative media are again characterized by requi

that the dissipation inequality, here Eq.~5.1!, hold as an
equality. Such is the case if and only if, in additio
«̂2 ,m̂2 ,ĝ2 ,k̂250 and, by omitting the unnecessary subscr
1,

«̂5«̂T, m̂5m̂T, ĝ5ĝT, k̂5k̂T. ~5.5!

In indicial form, the symmetry forĝ and k̂ in Eq. ~5.5!
means that

ĝ i jkl5ĝ j ikl , k̂ i jkl5k̂ j ikl , ~5.6!

the invariance by interchange of the third and fourth indic
being true by definition.

VI. CONCLUSION

Chiral media are considered by lettingD be given by
convolutions ofE and“3E andB by convolutions ofH and
“3H. The constraints placed by Maxwell’s equations a
examined and hence necessary and sufficient condition
the constitutive functions are derived for the second law
hold. If instead terms up to second-order derivatives are
volved, the second law implies that the coefficients of t
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first-order derivatives vanish. A generalization of the mo
with higher-order derivatives would lead to the vanishing
the odd-order derivatives. This result allows us to view o
tically active or inactive media in a different way. If terms
second order and higher are zero, the medium can be
cally active with appropriate thermodynamic restrictions.
higher-order terms occur then only those of even order m
be nonzero. It is worth mentioning the assertion that in cr
tals, whose symmetry does not allow natural optical activ
the first terms in the expansion of the permittivity are qu
dratic terms@2#. Here we have proved that also the conve
is true, namely, the occurrence of quadratic or higher-or
terms rules out optical activity~first-order terms!.

It is of interest to summarize the main results. For op
cally active media@Eqs.~4.1!#, thermodynamics requires tha
@see Eqs.~4.2! and ~4.9!#

ĥ2,0, «̂2.0, â252 ĵ2
T , â15 ĵ1

T , N50,
~6.1!

where ĵ5m̂21l̂«̂ and ĥ5m̂21(12v2l̂â). Nondissipation
means that«̂2 and ĥ2 vanish, namely,

E
0

`

«~u!sin vu du50, ;v>0. ~6.2!

The condition~6.2! implies that the kernel«(u) is zero for
every u>0. Only the constant value«0 is allowed to be
l
f
-

ti-
f
y
-
,
-
e
r

-

nonzero. In the isotropic case,a and l may be complex
valued, which means that the kernels ofa and l need not
vanish. They vanish if the particular Drude-Born-Feder
model is adopted.

For optically inactive media~higher-order terms!, thermo-
dynamics requires that@see Eqs.~5.3! and ~5.4!#

«̂2.0, m̂2.0, ĝ2,0, k̂2,0, ~6.3!

while Eq. ~5.2! holds. In terms of the functional represent
tions, Eq.~6.3! means that the sine transform of the pertine
kernels are required to be definite, namely,

E
0

`

«~u!sin vu du.0, E
0

`

g~u!sin vu du,0, ~6.4!

and analogously for the kernelsm(u),k(u). By Eq. ~5.2! the
kernelsa(u),b(u),l(u),n(u) vanish for allu>0.

The present results about optically active and optica
inactive materials, with anisotropy and dissipation, are ess
tially different. They generalize the inequalities for the pe
mittivity and the permeability of dispersive media that a
derived by requiring that the divergence of the Poynting v
tor be negative~see@2#, Chap. 2!. The generality of the ther-
modynamic condition~2.7! is at the basis of the progress. I
this regard it is crucial that the entropy fluxN, related to
nonlocality, is allowed to occur.
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